If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+x^2=99
We move all terms to the left:
5x+x^2-(99)=0
a = 1; b = 5; c = -99;
Δ = b2-4ac
Δ = 52-4·1·(-99)
Δ = 421
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{421}}{2*1}=\frac{-5-\sqrt{421}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{421}}{2*1}=\frac{-5+\sqrt{421}}{2} $
| 2(6x+9)=3(4x+6) | | 6x+40=-4x+60 | | 60-2x=6 | | √x+1=3 | | 10x+10=5x-50 | | 2x2+x-627= | | 0.5x-x=-240 | | 2(5a–10)–9a+6=0 | | 4x+9x-26=52 | | 6(x-20)=40 | | |x-7|=-3 | | 3x-5x+12=21 | | 3-2(4-y)=7 | | 9p/4=6 | | 2m+10=-4 | | 5y-8=13. | | 3x²-7x-6=0. | | 5(2x-2)-3(2x-1)=7x-11 | | 2x²+5x-280=0 | | 4x+5/2x-6=15/16 | | x^2-16x+540=0 | | 2(y/6-6)+2y=10 | | ((x)/(6))=7 | | 5x+6=31-6 | | 3*(x-5)=-2x-10 | | (2x+8)+2x+x=63 | | –20−b=19+2b | | 2(y/6)+2y=10 | | 1/3a-5=3 | | 9+3c=6 | | X×x+1=272 | | 24g=12 |